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DENSITIES FOR 4-RANKS OF REAL QUADRATIC
FUNCTION FIELDS

HWANYUP JUNG*

ABSTRACT. In this paper we study of densities of the 4-rank of
narrow ideal class groups of real quadratic function fields over the
rational function field Fq(7") when ¢ = 3 mod 4.

1. Introduction and statement of result

Let k = Fy(T) be the rational function field over the finite field [,
of odd characteristic and oo be the prime of k associated to 1/7T", which
is called the infinite prime of k. Let K be a quadratic extension of
k. We say that K is real extension of k if oo splits and imaginary
extension of k otherwise. In this paper, by a real quadratic function field
we always mean a real quadratic extension of k. Wittmann [6] motivated
by Gerth’s article [2] has studied the distribution of the 4-rank of ideal
class groups of (ramified) imaginary quadratic function fields K over
k. The aim of this paper is to study the distribution of the 4-rank of
(narrow) ideal class groups of real quadratic function fields K over k.

Let A = F,[T] be the polynomial ring. Let D be the subset of A
consisting of all monic square free polynomials D # 1 in A of even
degree. For any D € D, kp := k(v/D) is a real quadratic function field
over k. Moreover, for any real quadratic function field K of k, there
exists a unique D € D such that K = kp. Let Op be the integral closure
of A in kp and Cp be the narrow ideal class group of Op. Let T‘I(D) be
the 4-rank of Cp, that is, r] (D) = dimp, (C%/C},). Let w(D) denote the
number of distinct monic irreducible divisors of D. For positive integers
t,d (d is even) and a nonnegative integer r with 0 < r <t —1, write Aggq
for the set of all real quadratic function fields kp with D € D,deg D = d
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and w(D) = t, and Ay ;.4 for the subset of A;.4 consisting of all kp € Ayq
with 7] (D) = r. We define a density

T | tr‘d|
)= T

d:even

We also define the limit density
aoo(r) = lim oy (r).
t—o0
For any 0 < z < 1 and n € NU {00}, we put (x), = [[1=,(1 — 2%). The
main result of this paper is the following theorem.
THEOREM 1.1. Assume that ¢ = 3 mod 4. Then the limit density

0o (1) exists for all r > 0, and we have

aoo(r) _ 2fr(r+1) (%
(3)n(

For small values of r, the limit density qoo(r
digits):

)oo
%)er
(r

) equals (up to 10 decimal

55(0) [ 0.5775761902
5 (1) | 0.1925253967
5(2) | 0.0068759070
0o (3)
Joo(4)

0.0000859488
0.0000003032

2. Narrow genus field and Redei-matrix

1. Narrow ideal class group

For D € D, write Clp = Zp/Pp for the ordinary ideal class group of
Op, where ZTp is the group of fractional ideals of Op and Pp = {(x) €
Ip : x € k},}. Let ks be the completion of k at co. Fix a sign map
sgn : ki, — Fy with sgn(1/T) = 1. Define sgn(z) = sgn(:v)% for any
x € kX. Fix an embedding of kp into ko. We say that an element
x € k}, is totally positive if sgn(x) = sgn(z?) = 1, where o is the
generator of G = Gal(kp/k). Let kj; be the subset of k}, consisting of
all totally positive elements. The narrow ideal class group Cp of Op
is defined by Cp = Ip/P},, where P} = {(z) € Ip : « € k}. Let
N be the norm map from kp to k. For any fractional ideal a of Op,
we denote by [a] and [a]; the images of a in Clp and Cp, respectively.
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Let m : Cp — Clp be the canonical surjective homomorphism defined by

m([a]4) = [a].

LEMMA 2.1. We have |Ker(m)| < 2, and |Ker(n)| = 2 if and only if

N(Ep) = F;?, where Ep is the group of units of Op.

Proof. Note that Ker(m) = Pp/P;. There is an exact sequence
1 — Ep/E}, — kp/kf, — Pp/P} — 1,
where E'g = kB N Ep. Consider a homomorphism
bk — {1} x {1}, = (sga(z), 5g7(a")),

whose kernel is k7. Let v be a generator of 7. We have ¢(v) =
(—1,—1). Let zp € kp be defined by

S VD if ¢ =3 mod 4,
b= A+ BvVD if g=1mod4,

where A, B € A are chosen to satisfy deg A = deg B + %degD and
sgn(A)? — sgn(B)* € F;2. If ¢ = 3 mod 4, then we have sgn(N(zp)) =
sgn(—D)qT_1 = —1. If ¢ = 1 mod 4, then, since sgn(A)*—sgn(B)* € F;?,
we have
ST (2p)) = (sgn(4)? —sgn(B)*)'T = -1

Hence ¢¥(xp) = (1,—1) or (—1,1). Thus 9 is surjective, and it induces
an isomorphism k},/kf; & {£1} x {£1}. Let ep be the fundamental
unit of k‘D, i.e., ED = ]F;; X <5D>-

Assume that N'(Ep) = F;%. Then N(ep) € F}? and so sgn(ep) =
sgn(o(ep)). If sgn(ep) = 1, then ep € E}, so we have E}, = IF’:IQ X
(ep), Ep/E}, 2 7/27 and |Ker(r)| = 2. If sgn(ep) = —1, then vep €
E}, so we have Fi? x (7)) C Ef}, Ep/E}, = Z/2Z and |Ker(r)| = 2.

Now, we assume that N'(Ep) = F;. Then N(ep) € F; \F;?. We may
assume o(ep) = vep. Then sgn(ep)sgn(o(ep)) = —1, say sgn(ep) =1
and sgn(o(ep)) = —1. For any %% € FEp, we have sgn(y%h) =
(=1)* and sgn(o(v%€Y%)) = (—1)**’. Hence v%¢% € Ej, if and only if
a=0b=0mod2. Thus Ef, = F:* x (¢},), Ep/E}, = Z/2Z x Z/2Z and
|Ker(m)| = 1. O

Write ro(D) and r3 (D) for the 2-ranks of Clp and Cp, respectively,
i.e., ro(D) = dimp, (Clp/Cl%) and r5 (D) = dimg, (Cp/C%). We say that
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D is special if each monic irreducible divisor of D is of even degree. It
is known [5, Theorem 2.1] that

w(D)—1 if D is special,
w(D) —2 otherwise.

(2.1) ro(D) = {

LEMMA 2.2. Let D € D with monic irreducible factorization D =
Py --- P,. Let p; be the unique prime ideal of Op lying above P; for 1 <

i <t. Then rj (D) =t — 1. Moreover, we have C$ = ([p1]+, ..., [Ptl+),
except in the case that N (Ep) = Ffﬁ and ¢ = 1 mod 4. In this excep-
tional case we have CG = ([p1]+,. .., [pe]+, [b]+), where b is any principal

ideal generated by an element 8 € k}, \ kj, such that 8 € k}, \ kj for
any € € Ep, and [b]; € Cj; 7 or [b]4 & Cj; 7 according as D is special
or non-special.

Proof. Tt is known [5, Corollary 2.4] that CI is generated by [p1], ...,
[p¢], except the case that D is special and N (Ep) = IF:;Z, and in this ex-
ceptional case Cl$ is generated by [p1],...,[p¢], [a], where a is a frac-
tional ideal of Op such that a'=7 = aOp with o € kT, satisfying
N(a) € F; \ F;2. First, we assume that [Ker(w)| = 1. Then Cg = CI§
and 73 (D) = ro(D). Since N(Ep) = F;, D is special, so r§ (D) =
ro(D) =t — 1 and C$ is generated by [p1]+,. .., [Pt]+-

Now, we assume that |Ker(n)| = 2. In this case N (Ep) = IF;Q. From
the following commutative diagram

1[r]Ker(m)[r][d]*=°Cp[r]™[d]* =7 Clp[r][d]* ~11[r] Ker(x)[r]Cp[r]"Clp[r]1
we get an exact sequence (by Snake Lemma)

1 — Ker(r) — C§ — CI$, 2 Ker(m) — Cp/Ch 7 — Clp/Cly, " — 1,
where ¥([b]) = [b]2 € Ker(r) for any [b] € CI5. Note that
(2:2) Y([p) = p7)+ = [(P)]+ =1
for 1 <i < t. When ¢ = 3 mod 4, it can be easily shown that /D ¢
Ep\ kB for any e € Ep. Hence, in this case, we have
(2.3) Ker(r) = {1,[(VD)]+} with [(VD)]4 = [p]4 -+ [pe]+-

Case 1. D is special. Since N () € F} \ Fi?, we have a € k}, \ kj,.

Moreover, it can be shown that ea € kB\kB for any € € Ep, so we have

(2.4) ([a]) = [ = [(@)]+ # L.
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By (2.2) and (2.4), we see that ¥ is surjective and Ker(¥) = ([p1], ..., [p¢]).
Hence, Cp/C, " = Clp/Cly 7, so rg (D) = r9(D) = t — 1. Since
Ker(m) = Im(¥) = {1,[(a)]+}, from the exact sequences

1 — Ker(r) — CS — Ker(¥) — 1,

we see that C% is generated by [p1]+, .. ., [Pt]+, [(@)]+. Since ¥ is surjec-
tive, the homomorphism Ker(r) — Cp/Cp, 7 is trivial, so [(a)]+ € Cp; 7.
When ¢ = 3 mod 4, we have

[(@)]+ = [(VD)l+ = [pa]+ -+ [pe]+

by (2.3), so C4 is generated by [p1]+, ..., [pe]+-
Case 2. D 1is non-special. In this case, since Clg is generated by
[p1], ..., [pe), by (2.2), ¥ is trivial, so we have exact sequence

1 — Ker(r) — CH — Cl% — 1.

Hence, 75 (D) = r2(D)+1 = t—1 and C$ is generated by [p1]+, - - -, [p]+,
[(8)]+, where Ker(m) = {1,[(#)]+}. Since ¥ is trivial, the homo-
morphism Ker(m) — CD/CID_” is injective, so [(0)]+ ¢ C}j_”. When
q = 3 mod 4, we have

[(D))+ = (VD)4 = [pa]+ -~ [pe]+
by (2.3), so C% is generated by [p1]+, ..., [pe]+- O

2.2. Narrow genus field

Let Hg be the narrow Hilbert class field of kp and GE be the nar-
row genus field of kp/k. Then we have canonical isomorphisms Cp =
Gal(H}/kp) and Cp/Cp, 7 = Gal(Gf/kp) via the Artin maps. Note
that C}j" = CQD, Cg = oCp and CD/C};” = CD/C% = 9Cp, since o acts
on Cp as —1.

PROPOSITION 2.3. Let D € D with monic irreducible factorization
D = Py---P,. Then we have G}, = k(\/Pf,...,\/P;), where P} =
(71)deg PlB

Proof. Note that the narrow Hilbert class field HE of kp can be
characterized as the maximal abelian extension of kp which is unramified
at all finite primes and which is contained in F,((y/—1/T)). Hence,

k(y/P;) is contained in Hj, for all 1 <4 < t. Since k(\/Py),...,k(/FP)
are mutually disjoint over k, the result follows from Lemma 2.2. O
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2.3. Rédei-matrix

Let D € D with monic irreducible factorization D = P, --- P;. For
1 <i#j<t,let mj; € Fy be defined by (—1)"4 = (%) We define a
txtortx(t+1) matrix Rp over Fg, which is so called the Redei-matrix
of kp, as follows.
(i) When D is special or ¢ = 3 mod 4, then Rp = (m;)i<i j<¢t, where
the diagonal entries m;; are given by the relation 2521 m;; = 0.
(ii) When ¢ = 1 mod 4 and D is non-special, then Rp is the ¢t x (t+1)
matrix obtained from the ¢ x ¢ matrix (m;;)1<; j<¢ given in (i) by
adjoining the transpose of (mig mag -+ myp) in the first column,
where m;g is defined by (—1)"0 = (%) for a generator B of N'(b).
Here b is a square free integral ideal of Op such that all the prime
ideals dividing it are completely split in kp/k and [b]; is a member
of generators of ClDf‘7 as in Lemma 2.2.

PROPOSITION 2.4. We have rj (D) =t — 1 —rank Rp.

Proof. We follow the arguments in [5, §3]. Consider the following
composite map

(2.5) d:CH — Cp/CYH = Gal(Gh/kp) — Gal(Gh/k),

where the first map is induced by the inclusion Cg C Cp, and the iso-
morphism in the middle is the Artin map. For any [b]+ € C§, we have

a((6)) - (92L2),

Since @ is a linear map of Fa-vector spaces and |Ker(®)| = |CENCY | =
IC%/C%|, we have
rf (D) = dim(Ker(®)) = dim(C$) — dim(Im(®)) = r§ (D) — rank Rp,
where Rp is a matrix representing ®. By Proposition 2.3, we have
GJDr = Ki--- Ky with K; = k(\/P}) for 1 < i < t. Choose elements
o1,...,01 € Gal(G},/k) such that

Gal(GE/Kl cee Ki—lKi-i-l s Kt) = <Uz> and Ui(\/Pi*> = _‘/1Di*'

Then Gal(G}/k) is generated by o7, ...,0 and Gal(G}, /kp) is the fol-
lowing Fa-subspace of codimension 1:

t
Gal(G},/kp) = {alfl A Zkl = 0 mod 2}.
=1
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Case 1. D 1is special or ¢ = 3 mod 4. In this case, by Lemma 2.2, we
only need to consider [pi]4, ..., [p¢]+ for the matrix Rp representing .
We define RD = (mij)lgi,jgt by

O([pyl) =0y oy, 1< j <t

Then we have

.
(CEL2) (7 = 2D (VP) = (-1

pj
and on the other hand by definition of the Artin symbol

(B4 () = (VP = () VP o3

Pj
where B, |p; is a prime ideal of GE. Hence, for i # j, we get

(—1)mis = <};]>

The diagonal entries m;; are given by the relation 25:1 m;; = 0 defining
Gal(G}/kp). Therefore, we have rf (D) =t — 1 — rank Rp.

Case 2. ¢ = 1 mod 4 and D is non-special. In this case we should
consider the generator [b]; of C§ in Lemma 2.2, since [b]4 & Cp, " = C2,.
Since any prime ideal of Op which is inert over k is a principal generated
by a monic irreducible polynomial, and since the classes of the ramified
prime ideals are among the generators of Cg, we can assume without
loss of generality that b is an integral ideal such that all the prime ideals
dividing it are completely split in kp/k. We can also assume that b is
square free. Write b = [], q,, where q, is a prime ideal of Op which
is inert over k. Let (), be the monic irreducible polynomial such that
N(qv) = (Qy) and B =[], Q. Then we have

(Sl - () v

qu
which leads to

() wr = () ver
Then the matrix Rp = (mij)i<i<t0<j<t is defined as follows; m;; for

j > 0 are defined as in Case 1, and ®([b]}) = 07" ---0,"°. So myq is

determined by
P*
_1)ymio — (i
(=1) ( B >

Then we have 7§ (D) =t — 1 — rank Rp. O
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3. Proof of Theorem 1.1
In this section we give a proof of Theorem 1.1. Let P(d,t) be the

set of all monic square free polynomials D in A with deg D = d and
w(D) =t. Then, as d — oo, we have ([6, Theorem 2.1] or [1, (1.2)])

(3.1) |P(d,t)| =

g’ (logd)"”"! q*(logd)"*
(t—1)ld o(r—)

Let P’(d,t) be the subset of P(d,t) consisting of all D = P,--- P, €
P(d,t) such that deg P, < --- < deg P;. Then, as d — oo, we have ([6,
Proposition 2.2])

d t—1
q“(logd
(32) P, )\ P, )] = o TEED ).

For given dy,...,d; € {0,1} with dy +--- +d; = 0mod 2 and ¢;; €
{£1} for 1 <i < j <t,write P'(d,t;{d;},{ei;}) for the subset of P'(d,t)
consisting of all D = P, --- P, € P'(d, t) such that deg P; = d; mod 2 for
1§i§tand(%):€ij for 1 <i < j <t. Then, as d — oo, we have
([3, Proposition 2.3])

d t—1 d t—2
a1 e | ol q°(logd) q“(log d)
(33) |P(dt; {di}, {ei})| = 2"~ Aﬁijf+o(——j—f)

Now, we assume that ¢ = 3mod 4. By definition, A,y = {kp :
D € P(d,t)}, so |Ayal = |P(d,t)]. Let Ay, = {kp : D € P'(d,t)} and
Al g = Apg N Agria- Then, by (3.2), we have |Ayq| ~ A}, so

(3.4) a(r) = lim At
. t = .

v Al
Ford,...,d; € {0, 1} with di +---+d; = 0 mod 2, write Mr<d1, R ,dt)
for the set of all ¢ x t matrices M = (m;;) over Fo whose rows sum up
to the zero row, of rank ¢t — 1 — r, satisfying, for i # j, m;; # my; if
d; = dj = 1 and m;; = mj; otherwise. By (3.3), we have

At ral = > > P'(d, t; {di}, {mi;})]

dy,eensdr €001} M=(my;)EMy(di ... dr)
dq+--+dp=0(2)

21—’52% ¢*(logd)"!

G -0

> IMp(d,.. . dy)l.

dy,...,d;€{0,1}
dy+---+dp=0(2)
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Since |Apa| ~ |44l by (3.1), (3.4) and (3.5), we have

2
ar) =27 Y M(dy,..,dy).
dy,...,d;€{0,1}
di+---+dp=0(2)
The number of matrices in M,.(dy,...,d;) only depends on the number
s of indices i such that d; = 1 (note that s must be an even number).
Therefore

M (dr, .. dy) = [Mo(1,...,1,0,...,0)|.
— ——

For simplicity, we write

M) = M,(1,...,1,0,...,0).

T

By omitting the sth row/column of each matrix (instead of including

the condition that the sum of all rows equals the zero row) in Mﬁs) , We
see that

M| = N'(t—1,t—1—rs5—1),
where N’(n,a,b) denotes the number of n X n matrices (m;;) over Fa
of rank a such that m;; # mj for all 1 < i < 7 <b, and m;; = my;
otherwise. Thus, we have

2

t
ay(r) = ol—5 Z <S>N’(t —1,t—1-r,s—1).

0<s<t
s:ieven

Finally, as in [2, §5], we have

20— a— ) ()
Qoo(T) = m=1 =27 r(r+D) 1 2(
2

[l —2"m) )r % r1
which competes the proof.
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