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DENSITIES FOR 4-RANKS OF REAL QUADRATIC
FUNCTION FIELDS

Hwanyup Jung*

Abstract. In this paper we study of densities of the 4-rank of
narrow ideal class groups of real quadratic function fields over the
rational function field Fq(T ) when q ≡ 3 mod 4.

1. Introduction and statement of result

Let k = Fq(T ) be the rational function field over the finite field Fq

of odd characteristic and ∞ be the prime of k associated to 1/T , which
is called the infinite prime of k. Let K be a quadratic extension of
k. We say that K is real extension of k if ∞ splits and imaginary
extension of k otherwise. In this paper, by a real quadratic function field
we always mean a real quadratic extension of k. Wittmann [6] motivated
by Gerth’s article [2] has studied the distribution of the 4-rank of ideal
class groups of (ramified) imaginary quadratic function fields K over
k. The aim of this paper is to study the distribution of the 4-rank of
(narrow) ideal class groups of real quadratic function fields K over k.

Let A = Fq[T ] be the polynomial ring. Let D be the subset of A
consisting of all monic square free polynomials D 6= 1 in A of even
degree. For any D ∈ D, kD := k(

√
D) is a real quadratic function field

over k. Moreover, for any real quadratic function field K of k, there
exists a unique D ∈ D such that K = kD. Let OD be the integral closure
of A in kD and CD be the narrow ideal class group of OD. Let r+

4 (D) be
the 4-rank of CD, that is, r+

4 (D) = dimF2(C2
D/C4

D). Let ω(D) denote the
number of distinct monic irreducible divisors of D. For positive integers
t, d (d is even) and a nonnegative integer r with 0 ≤ r ≤ t−1, write At;d

for the set of all real quadratic function fields kD with D ∈ D, deg D = d
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and ω(D) = t, and At,r;d for the subset of At;d consisting of all kD ∈ At;d

with r+
4 (D) = r. We define a density

αt(r) = lim
d→∞
d:even

|At,r;d|
|At;d| .

We also define the limit density

α∞(r) = lim
t→∞αt(r).

For any 0 < x < 1 and n ∈ N ∪ {∞}, we put (x)n =
∏n

i=1(1− xi). The
main result of this paper is the following theorem.

Theorem 1.1. Assume that q ≡ 3 mod 4. Then the limit density
δ∞(r) exists for all r ≥ 0, and we have

α∞(r) = 2−r(r+1) (1
2)∞

(1
2)r(1

2)r+1
.

For small values of r, the limit density α∞(r) equals (up to 10 decimal
digits):

δ∞(0) 0.5775761902
δ∞(1) 0.1925253967
δ∞(2) 0.0068759070
δ∞(3) 0.0000859488
δ∞(4) 0.0000003032

2. Narrow genus field and Rèdei-matrix

2.1. Narrow ideal class group

For D ∈ D, write ClD = ID/PD for the ordinary ideal class group of
OD, where ID is the group of fractional ideals of OD and PD = {(x) ∈
ID : x ∈ k∗D}. Let k∞ be the completion of k at ∞. Fix a sign map
sgn : k∗∞ → F∗q with sgn(1/T ) = 1. Define sgn(x) = sgn(x)

q−1
2 for any

x ∈ k∗∞. Fix an embedding of kD into k∞. We say that an element
x ∈ k∗D is totally positive if sgn(x) = sgn(xσ) = 1, where σ is the
generator of G = Gal(kD/k). Let k+

D be the subset of k∗D consisting of
all totally positive elements. The narrow ideal class group CD of OD

is defined by CD := ID/P+
D , where P+

D = {(x) ∈ ID : x ∈ k+
D}. Let

N be the norm map from kD to k. For any fractional ideal a of OD,
we denote by [a] and [a]+ the images of a in ClD and CD, respectively.
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Let π : CD → ClD be the canonical surjective homomorphism defined by
π([a]+) = [a].

Lemma 2.1. We have |Ker(π)| ≤ 2, and |Ker(π)| = 2 if and only if
N (ED) = F∗2q , where ED is the group of units of OD.

Proof. Note that Ker(π) = PD/P+
D . There is an exact sequence

1 → ED/E+
D → k∗D/k+

D → PD/P+
D → 1,

where E+
D = k+

D ∩ ED. Consider a homomorphism

ψ : k∗D → {±1} × {±1}, x 7→ (sgn(x), sgn(xσ)),

whose kernel is k+
D. Let γ be a generator of F∗q . We have ψ(γ) =

(−1,−1). Let xD ∈ kD be defined by

xD =

{√
D if q ≡ 3 mod 4,

A + B
√

D if q ≡ 1 mod 4,

where A,B ∈ A are chosen to satisfy deg A = deg B + 1
2 deg D and

sgn(A)2 − sgn(B)2 6∈ F∗2q . If q ≡ 3 mod 4, then we have sgn(N (xD)) =

sgn(−D)
q−1
2 = −1. If q ≡ 1 mod 4, then, since sgn(A)2−sgn(B)2 6∈ F∗2q ,

we have
sgn(N (xD)) = (sgn(A)2 − sgn(B)2)

q−1
2 = −1.

Hence ψ(xD) = (1,−1) or (−1, 1). Thus ψ is surjective, and it induces
an isomorphism k∗D/k+

D
∼= {±1} × {±1}. Let εD be the fundamental

unit of kD, i.e., ED = F∗q × 〈εD〉.
Assume that N (ED) = F∗2q . Then N (εD) ∈ F∗2q and so sgn(εD) =

sgn(σ(εD)). If sgn(εD) = 1, then εD ∈ E+
D, so we have E+

D = F∗2q ×
〈εD〉, ED/E+

D
∼= Z/2Z and |Ker(π)| = 2. If sgn(εD) = −1, then γεD ∈

E+
D, so we have F∗2q × 〈ε2

D〉 ⊂ E+
D, ED/E+

D
∼= Z/2Z and |Ker(π)| = 2.

Now, we assume that N (ED) = F∗q . Then N (εD) ∈ F∗q \F∗2q . We may
assume σ(εD) = γεD. Then sgn(εD)sgn(σ(εD)) = −1, say sgn(εD) = 1
and sgn(σ(εD)) = −1. For any γaεb

D ∈ ED, we have sgn(γaεb
D) =

(−1)a and sgn(σ(γaεb
D)) = (−1)a+b. Hence γaεb

D ∈ E+
D if and only if

a ≡ b ≡ 0 mod 2. Thus E+
D = F∗2q × 〈ε2

D〉, ED/E+
D
∼= Z/2Z× Z/2Z and

|Ker(π)| = 1.

Write r2(D) and r+
2 (D) for the 2-ranks of ClD and CD, respectively,

i.e., r2(D) = dimF2(ClD/Cl2D) and r+
2 (D) = dimF2(CD/C2

D). We say that
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D is special if each monic irreducible divisor of D is of even degree. It
is known [5, Theorem 2.1] that

(2.1) r2(D) =

{
ω(D)− 1 if D is special,
ω(D)− 2 otherwise.

Lemma 2.2. Let D ∈ D with monic irreducible factorization D =
P1 · · ·Pt. Let pi be the unique prime ideal of OD lying above Pi for 1 ≤
i ≤ t. Then r+

2 (D) = t − 1. Moreover, we have CG
D = 〈[p1]+, . . . , [pt]+〉,

except in the case that N (ED) = F∗2q and q ≡ 1 mod 4. In this excep-

tional case we have CG
D = 〈[p1]+, . . . , [pt]+, [b]+〉, where b is any principal

ideal generated by an element β ∈ k∗D \ k+
D such that εβ ∈ k∗D \ k+

D for

any ε ∈ ED, and [b]+ ∈ C1−σ
D or [b]+ 6∈ C1−σ

D according as D is special
or non-special.

Proof. It is known [5, Corollary 2.4] that ClGD is generated by [p1], . . . ,
[pt], except the case that D is special and N (ED) = F∗2q , and in this ex-
ceptional case ClGD is generated by [p1], . . . , [pt], [a], where a is a frac-
tional ideal of OD such that a1−σ = αOD with α ∈ k∗D satisfying
N (α) ∈ F∗q \ F∗2q . First, we assume that |Ker(π)| = 1. Then CG

D
∼= ClGD

and r+
2 (D) = r2(D). Since N (ED) = F∗q , D is special, so r+

2 (D) =
r2(D) = t− 1 and CG

D is generated by [p1]+, . . . , [pt]+.
Now, we assume that |Ker(π)| = 2. In this case N (ED) = F∗2q . From

the following commutative diagram

1[r]Ker(π)[r][d]1−σCD[r]π[d]1−σClD[r][d]1−σ11[r]Ker(π)[r]CD[r]πClD[r]1

we get an exact sequence (by Snake Lemma)

1 → Ker(π) → CG
D → ClGD Ψ→ Ker(π) → CD/C1−σ

D → ClD/Cl1−σ
D → 1,

where Ψ([b]) = [b]2+ ∈ Ker(π) for any [b] ∈ ClGD. Note that

(2.2) Ψ([pi]) = [p2
i ]+ = [(Pi)]+ = 1

for 1 ≤ i ≤ t. When q ≡ 3 mod 4, it can be easily shown that ε
√

D 6∈
k∗D \ k+

D for any ε ∈ ED. Hence, in this case, we have

(2.3) Ker(π) = {1, [(
√

D)]+} with [(
√

D)]+ = [p1]+ · · · [pt]+.

Case 1. D is special. Since N (α) ∈ F∗q \ F∗2q , we have α ∈ k∗D \ k+
D.

Moreover, it can be shown that εα ∈ k∗D \k+
D for any ε ∈ ED, so we have

(2.4) Ψ([a]) = [a2]+ = [(α)]+ 6= 1.
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By (2.2) and (2.4), we see that Ψ is surjective and Ker(Ψ) = 〈[p1], . . . , [pt]〉.
Hence, CD/C1−σ

D
∼= ClD/Cl1−σ

D , so r+
2 (D) = r2(D) = t − 1. Since

Ker(π) = Im(Ψ) = {1, [(α)]+}, from the exact sequences

1 → Ker(π) → CG
D → Ker(Ψ) → 1,

we see that CG
D is generated by [p1]+, . . . , [pt]+, [(α)]+. Since Ψ is surjec-

tive, the homomorphism Ker(π) → CD/C1−σ
D is trivial, so [(α)]+ ∈ C1−σ

D .
When q ≡ 3 mod 4, we have

[(α)]+ = [(
√

D)]+ = [p1]+ · · · [pt]+

by (2.3), so CG
D is generated by [p1]+, . . . , [pt]+.

Case 2. D is non-special. In this case, since ClGD is generated by
[p1], . . . , [pt], by (2.2), Ψ is trivial, so we have exact sequence

1 → Ker(π) → CG
D → ClGD → 1.

Hence, r+
2 (D) = r2(D)+1 = t−1 and CG

D is generated by [p1]+, . . . , [pt]+,
[(β)]+, where Ker(π) = {1, [(β)]+}. Since Ψ is trivial, the homo-
morphism Ker(π) → CD/C1−σ

D is injective, so [(β)]+ 6∈ C1−σ
D . When

q ≡ 3 mod 4, we have

[(β)]+ = [(
√

D)]+ = [p1]+ · · · [pt]+

by (2.3), so CG
D is generated by [p1]+, . . . , [pt]+.

2.2. Narrow genus field

Let H+
D be the narrow Hilbert class field of kD and G+

D be the nar-
row genus field of kD/k. Then we have canonical isomorphisms CD

∼=
Gal(H+

D/kD) and CD/C1−σ
D

∼= Gal(G+
D/kD) via the Artin maps. Note

that C1−σ
D = C2

D, CG
D = 2CD and CD/C1−σ

D = CD/C2
D
∼= 2CD, since σ acts

on CD as −1.

Proposition 2.3. Let D ∈ D with monic irreducible factorization
D = P1 · · ·Pt. Then we have G+

D = k(
√

P ∗
1 , . . . ,

√
P ∗

t ), where P ∗
i =

(−1)deg PiPi.

Proof. Note that the narrow Hilbert class field H+
D of kD can be

characterized as the maximal abelian extension of kD which is unramified
at all finite primes and which is contained in Fq((

√
−1/T )). Hence,

k(
√

P ∗
i ) is contained in H+

D for all 1 ≤ i ≤ t. Since k(
√

P ∗
1 ), . . . , k(

√
P ∗

t )
are mutually disjoint over k, the result follows from Lemma 2.2.
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2.3. Rèdei-matrix

Let D ∈ D with monic irreducible factorization D = P1 · · ·Pt. For
1 ≤ i 6= j ≤ t, let mij ∈ F2 be defined by (−1)mij = (P ∗i

Pj
). We define a

t× t or t×(t+1) matrix RD over F2, which is so called the Rèdei-matrix
of kD, as follows.

(i) When D is special or q ≡ 3 mod 4, then RD = (mij)1≤i,j≤t, where
the diagonal entries mii are given by the relation

∑t
i=1 mij = 0.

(ii) When q ≡ 1 mod 4 and D is non-special, then RD is the t× (t+1)
matrix obtained from the t× t matrix (mij)1≤i,j≤t given in (i) by
adjoining the transpose of (m10 m20 · · · mt0) in the first column,
where mi0 is defined by (−1)mi0 = (P ∗i

B ) for a generator B of N (b).
Here b is a square free integral ideal of OD such that all the prime
ideals dividing it are completely split in kD/k and [b]+ is a member
of generators of C1−σ

D as in Lemma 2.2.

Proposition 2.4. We have r+
4 (D) = t− 1− rankRD.

Proof. We follow the arguments in [5, §3]. Consider the following
composite map

(2.5) Φ : CG
D → CD/Cσ−1

D
∼= Gal(G+

D/kD) ↪→ Gal(G+
D/k),

where the first map is induced by the inclusion CG
D ⊆ CD, and the iso-

morphism in the middle is the Artin map. For any [b]+ ∈ CG
D, we have

Φ([b]+) =
(G+

D/kD

b

)
.

Since Φ is a linear map of F2-vector spaces and |Ker(Φ)| = |CG
D∩Cσ−1

D | =
|C2

D/C4
D|, we have

r+
4 (D) = dim(Ker(Φ)) = dim(CG

D)− dim(Im(Φ)) = r+
2 (D)− rankRD,

where RD is a matrix representing Φ. By Proposition 2.3, we have
G+

D = K1 · · ·Kt with Ki = k(
√

P ∗
i ) for 1 ≤ i ≤ t. Choose elements

σ1, . . . , σt ∈ Gal(G+
D/k) such that

Gal(G+
D/K1 · · ·Ki−1Ki+1 · · ·Kt) = 〈σi〉 and σi(

√
P ∗

i ) = −√
P ∗

i .

Then Gal(G+
D/k) is generated by σ1, . . . , σt and Gal(G+

D/kD) is the fol-
lowing F2-subspace of codimension 1:

Gal(G+
D/kD) =

{
σk1

1 · · ·σkt
t :

t∑

i=1

ki ≡ 0 mod 2
}

.



Densities for 4-ranks of real quadratic function fields 559

Case 1. D is special or q ≡ 3 mod 4. In this case, by Lemma 2.2, we
only need to consider [p1]+, . . . , [pt]+ for the matrix RD representing Φ.
We define RD = (mij)1≤i,j≤t by

Φ([pj ]+) = σ
m1j

1 · · ·σmtj

t , 1 ≤ j ≤ t.

Then we have
(G+

D/kD

pj

)
(
√

P ∗
i ) = Φ([pj ])(

√
P ∗

i ) = (−1)mij
√

P ∗
i ,

and on the other hand by definition of the Artin symbol
(G+

D/kD

pj

)
(
√

P ∗
i ) ≡ (

√
P ∗

i )qdeg Pj ≡
(P ∗

i

Pj

)√
P ∗

i mod Pj ,

where Pj |pj is a prime ideal of G+
D. Hence, for i 6= j, we get

(−1)mij =
(P ∗

i

Pj

)
.

The diagonal entries mii are given by the relation
∑t

i=1 mij = 0 defining
Gal(G+

D/kD). Therefore, we have r+
4 (D) = t− 1− rankRD.

Case 2. q ≡ 1 mod 4 and D is non-special. In this case we should
consider the generator [b]+ of CG

D in Lemma 2.2, since [b]+ 6∈ C1−σ
D = C2

D.
Since any prime ideal of OD which is inert over k is a principal generated
by a monic irreducible polynomial, and since the classes of the ramified
prime ideals are among the generators of CG

D, we can assume without
loss of generality that b is an integral ideal such that all the prime ideals
dividing it are completely split in kD/k. We can also assume that b is
square free. Write b =

∏
v qv, where qv is a prime ideal of OD which

is inert over k. Let Qv be the monic irreducible polynomial such that
N (qv) = (Qv) and B =

∏
v Qv. Then we have

(G+
D/kD

qv

)
(
√

P ∗
i ) =

(P ∗
i

Qv

)√
P ∗

i ,

which leads to (G+
D/kD

b

)
(
√

P ∗
i ) =

(P ∗
i

B

)√
P ∗

i .

Then the matrix RD = (mij)1≤i≤t,0≤j≤t is defined as follows; mij for
j > 0 are defined as in Case 1, and Φ([b]+) = σm10

1 · · ·σmt0
t . So mi0 is

determined by

(−1)mi0 =
(P ∗

i

B

)
.

Then we have r+
4 (D) = t− 1− rankRD.
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3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Let P(d, t) be the
set of all monic square free polynomials D in A with deg D = d and
ω(D) = t. Then, as d →∞, we have ([6, Theorem 2.1] or [1, (1.2)])

(3.1) |P(d, t)| = qd(log d)t−1

(t− 1)!d
+ O

(qd(log d)t−2

d

)
.

Let P ′(d, t) be the subset of P(d, t) consisting of all D = P1 · · ·Pt ∈
P(d, t) such that deg P1 < · · · < deg Pt. Then, as d → ∞, we have ([6,
Proposition 2.2])

(3.2) |P(d, t) \ P ′(d, t)| = o
(qd(log d)t−1

d

)
.

For given d1, . . . , dt ∈ {0, 1} with d1 + · · · + dt ≡ 0 mod 2 and εij ∈
{±1} for 1 ≤ i < j ≤ t, write P ′(d, t; {di}, {εij}) for the subset of P ′(d, t)
consisting of all D = P1 · · ·Pt ∈ P ′(d, t) such that deg Pi ≡ di mod 2 for
1 ≤ i ≤ t and (P ∗i

Pj
) = εij for 1 ≤ i < j ≤ t. Then, as d → ∞, we have

([3, Proposition 2.3])

(3.3) |P ′(d, t; {di}, {εij})| = 21− t2+t
2 · qd(log d)t−1

(t− 1)!d
+ O

(qd(log d)t−2

d

)
.

Now, we assume that q ≡ 3 mod 4. By definition, At;d = {kD :
D ∈ P(d, t)}, so |At;d| = |P(d, t)|. Let A′t;d = {kD : D ∈ P ′(d, t)} and
A′t,r;d = A′t;d ∩At,r;d. Then, by (3.2), we have |At;d| ∼ |A′t;d|, so

(3.4) αt(r) = lim
d→∞
d:even

|A′t,r;d|
|A′t;d|

.

For d1, . . . , dt ∈ {0, 1} with d1 + · · ·+dt ≡ 0 mod 2, write Mr(d1, . . . , dt)
for the set of all t × t matrices M = (mij) over F2 whose rows sum up
to the zero row, of rank t − 1 − r, satisfying, for i 6= j, mij 6= mji if
di = dj = 1 and mij = mji otherwise. By (3.3), we have

|A′t,r;d| =
∑

d1,...,dt∈{0,1}
d1+···+dt≡0(2)

∑

M=(mij)∈Mr(d1,...,dt)

|P ′(d, t; {di}, {mij})|

∼ 21− t2+t
2 · qd(log d)t−1

(t− 1)!d

∑
d1,...,dt∈{0,1}
d1+···+dt≡0(2)

|Mr(d1, . . . , dt)|.(3.5)
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Since |At;d| ∼ |A′t;d|, by (3.1), (3.4) and (3.5), we have

αt(r) = 21− t2+t
2

∑
d1,...,dt∈{0,1}
d1+···+dt≡0(2)

|Mr(d1, . . . , dt)|.

The number of matrices in Mr(d1, . . . , dt) only depends on the number
s of indices i such that di = 1 (note that s must be an even number).
Therefore

|Mr(d1, . . . , dt)| = |Mr(1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
t−s

)|.

For simplicity, we write

M(s)
r = Mr(1, . . . , 1︸ ︷︷ ︸

s

, 0, . . . , 0︸ ︷︷ ︸
t−s

).

By omitting the sth row/column of each matrix (instead of including
the condition that the sum of all rows equals the zero row) in M(s)

r , we
see that

|M(s)
r | = N ′(t− 1, t− 1− r, s− 1),

where N ′(n, a, b) denotes the number of n × n matrices (mij) over F2

of rank a such that mij 6= mji for all 1 ≤ i < j ≤ b, and mij = mji

otherwise. Thus, we have

αt(r) = 21− t2+t
2

∑
0≤s≤t
s:even

(
t

s

)
N ′(t− 1, t− 1− r, s− 1).

Finally, as in [2, §5], we have

α∞(r) =
2−r(r+1)

∏r
m=1(1− 2−m)−1(1− 2−m−1)−1

∏∞
m=2(1− 2−m)

= 2−r(r+1) ( 1
2 )∞

(1
2 )r( 1

2 )r+1

,

which competes the proof.

References

[1] S. Bae and H. Jung, `-ranks of class groups of function fields, J. Korean Math.
Soc. 49 (2012), no. 1, 49-67.

[2] F. Gerth, III, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984),
no. 3, 489-515.

[3] H. Jung, Density of class groups of imaginary `-cyclic function fields, Finite
Fields Appl. 17 (2011), no. 3, 286-293.

[4] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics
210, Springer-Verlag, New York, 2002, xii+358.

[5] C. Wittmann, l-class groups of cyclic function fields of degree l, Finite Fields
Appl. 13 (2007), no. 2, 327-347.



562 Hwanyup Jung

[6] C. Wittmann, Densities for 4-class ranks of quadratic function fields, J. Num-
ber Theory 129 (2009), no. 10, 2635-2645.

*
Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail : hyjung@chungbuk.ac.kr


